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ON THE KERNEL FUNCTION OF THE INTEGRAL EQUATION RELATING THE LIFT AND
DOWNWASH DISTRIBUTIONS OF OSCILLATING FINITE WINGS
IN SUBSONIC FLOW !

By Cuaries E, Watriys, Harry L. Ruxyax, and Doxarp 8. WooLstox

SUMMARY

This report treats the kernel function of an integral equation
that relates a known or prescribed downwask distribution to an
unknown lift distribution for a harmonically oscillating finite
wing in compressible subsonic flow. The kernel function is
reduced to a form that can be accurately evaluated by separating
the kernel function into two parts: a part in which the singular-
tttes are isolated and analytically expressed and a nonsingular
part which may be tabulated. The form of the kernel function
for the sonic case (Mach number of 1) is treated scparately. In
addition, results for the special cases of Mach number of 0
(incompressible case) and frequency of 0 (steady case) are given.

The derivation of the integral equation which involves this
kernel function, originally performed elsewhere (see, for example,
NACA Technical Memorandum 979), is reproduced as an
appendix.  dAnother appendiz gives the reduction of the form of
the kernel function obtained herein for the three-dimensional
case to @ known result of Possio for two-dimensional flow. A
third appendix contains some remarks on the evaluation of the
kernel funetion, and a fourth appendiz presents an alternate
Jorm of expression for the kernel function.

INTRODUCTION

The analytical determination of air forces on oscillating
wings in subsonic flow has been a continuing problem for the
past 30 years. Throughout the first and greater part of
this time, efforts were directed mainly toward the determina-
tion of forces on wings in incompressible flow, These efforts
have led to important closed-form solutions for rigid wings
mn two-dimensional flow (ref. 1), to solutions in terms of
series of Legendre functions for distorting wings of circular
plan form (refs. 2 and 3), and to many approximate, yet
useful, results for wings of elliptic, rectangular, and tri-
angular plan form (see, for example, refs. 4 to 12).

Although these results for incompressible flow play a
highly significant role in applications of unsteady acrody-
namic theory, the advent of higher and higher speed aircraft
during the last 15 years has brought a growing need for
knowledge of the effect that the compressibility of air might
have on unsteady air forces, or for analytically derived un-
steady air forces based on a compressible medium. The
transition to results for a compressible fluid from those for
an incompressible fluid is not likely to be accomplished by

! Supersedes NACA TN 3131, 1054,
39461956

applications of simple transformations or correction factors,
such as the well-known Prandtl-Glauert factor for steady
flow. This difficulty is associated with the fact that the time
required for signals arising at one point in the medium to
reach other points gives rise not only to changes in magni-
tudes of forces but also to additional phase lags between
instantancous positions, velocities, and accelerations of the
wing and the corresponding instantancous forces associated
with these quantities. In order to obtain results for the
compressible case, it therefore appears necessary to deal
dircetly with the boundary-value problem for this case.

The boundary-value problem for a two-dimensional wing
in compressible flow has been successfully attacked from two
points of view. First, by consideration of an acceleration or
pressure potential, Possio (ref. 13) reduced the problem to that
of an integral equation relating a prescribed downwash dis-
tribution to an unknown lift distribution. The kernel of this
integral equation, which is a rather abstruse function, was
reduced to a form that, exeept at singular points, could be
evaluated. Schwarz (ref. 14) later isolated and determined
the analytic behavior of the singular points of Possio’s results
and made fairly extensive tables of the kernel function.
These tabular values were used by various investigators
(for examples, refs. 15 and 16) to obtain, by numerical
procedures, initial tables of foree and moment coeflicients
for oscillating wings in compressible subsonic flow.

The second successful approach to the solution of the
boundary-value problem for a two-dimensional wing (sco
refs. 17 to 19) is achieved by a transformation to elliptic
coordinates followed by a separation of variables that reduces
the boundary-value problem from one in partial-differential
cquations to one in ordinary differential equations of the
AMathieu type.  The solutions turn out as infinite series in
terms of Nlathicu functions. Numerical results obtained
recently by this procedure agree with results previously ob-
tained by the numerical procedures using the kernel func-
tion (see, for example, ref. 20).

With regard to boundary-value problems for finite wings
in compressible flow, it appears that the procedure of sepa-
ration of variables could be a feasible approach only for
wings of very special plan forms such as a eircle or an ellipse.
In any case, the development of the appropriate mathe-

‘matical functions for a particular plan form would become
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highly involved.  On the other hand, it appears that approxi-
mate procedures similar to those used for two-dimensional
wings might afford an approach to solutions of these prob-
lems which, though laborious, might be handled by routine
numerical methods.

The Lkernel function of the integral equation relating pres-
sure and downwash for the three-dimensional case appears
as an improper integral. The purpose of this report is to
treat and discuss this kernel function.  The improper integral
is reduced to a form that can be accurately evaluated by
numerical procedures.  The form and order of all its singular-
ities are determined and an expression for the kernel function
is derived in which the singularities are Isolated. Special
forms of the kernel for the sonie case (3/=1), the incompres-
sible case (M =0}, and the steady ecase (k=0) are presented.
_\ series expansion in powers of the reduced-frequeney param-
cter k is developed.

The avallability of the kernel in a form which can be
rapidly evaluated makes possible the use of numerical pro-
cedures, similar 1o those used in the two-dimensional case,
to obtain aerodynamic forees for finite wings.

SYMBOLS

c velocity of sound

Hy» H® Hanke! functions of second kind of zero
and first order, respectively

1,1, modified Bessel functions of first kind of
zero and first 6rder, respectively

s Bessel funetion of first kind of zero order

K, K modified Bessel functions of second kind of
zero and first order, respectively

K(xy1) kernel function of integral equation

K’ (x0,710) singular part of K(ro,))

k reduced-frequency parameter, lwfV”

Ly, L, modified Struve functions of zero and first
order, respectively

L unknown lift distribution

l reference length

Ar Mach number, T7e

pressure

T=6\W

S region of ay-plane occupied by wing

{ time

1S forward velocity of wing

w(@,y) amplitude function of preseribed downywash,
wn,y 1) =T (a,y)

29,2,k Cartesian coordinates

ro=x—%

Yo=Y—1n

B: hY 1 —JIE

¥ Euler’s constant

— TR

¢ veloeity potential

¥ acceleration potential

P fluid density

w circular frequency of oscillation
w

ANALYSIS
INTEGRAL EQUATION AND ORIGINAL FORM OF KERNEL FUNCTION

The main purpose of this analysis is to treat the kernel
function of an integral equation that relates a known or
preseribed downwash distribution to an unknown lift dis-
tribution for a harmonically oscillating finite wing in com-
pressible subsonic flow. The integeal equation referred to
can be obtained by employing the Prandtl acceleration
potential 1o treat linearized boundary-value problems for
oscillating finite wings by means of doublet distributions.
Derivation of this integral equation from the linearized
boundary-value problem for a wing is a preliminary task
that has been done elsewhere (see, for example, ref. 213, but
it is reproduced herein as an appendix for the sake of com-
pleteness.

In keeping with the concepts of linear theory, the wing is
considered a plane impenetrable surface S which lies nearly
in the zy-planc as indicated in sketch 1:

|
Sketch 1.

The 2,y,z coordinate system and the surface S are assumed to
move in the negative z-dircction at a uniform velocity V.

In terms of these coordinates, the integral equation may be
formally written as

woi== [ [ L& Ko s dn )

where W(z,y) is the amplitude function of the prescribed
downwash, K{(xy,y)=K(x—E, y—n) is the kernel function
and physically represents the contribution to downwash at
a field point {z,5) due to a pulsating pressurc doublet of unit
strength located at any point (¢7), and L (¢,7) is the unknown
lift distribution or local doublet strength.

1F ¥
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The kernel funetion may be mathematically defined by the

following 1improper integral expression (sce eq. (A12),
g P g i
appendix A):
_ a? BT L M M T AT E)
K{(xy,y)=hm ' ¢ : (@)

=0 P Youd

where M is Mach number, 8=1—117, a=w/V8, w is the
circular frequency of oscillation, 17 1s the velocity, and
A is the variable of integration.  Ewvaluation of this integral
constitutes a main difficulty in obtaining acrodynamie
cocfficients for oscillating finite wings in compressible flow.
The present analysis is therefore devoted to reducing it to a
form that can be accurately cvaluated by numerical pro-
cedures combined with the use of tables of certain tabulated
functions. The form and order of all its singularitics arc
determined, and an expression for the kernel function is
derived in which the singularities arc isolated.

REDUCTION OF THE KERNEL FUNCTION

In considering the reduction of the kernel function

K(x,,7,), the integral involved can, for convenience, be
written as the sum of two integrals, namely
J‘x[, eia (- \1\ Nr? ® e=iS( ATy NE) iSOy N R)
—® Y )\ +r 0 hY )\I’Jﬁr
Iy em(k \f\ 2+r-) .
J‘U hY )\2+7' (.;)
Therefore,
az fwry 2 _i_“"fﬂ
K(J'u,?lu)=1§11[1) 3¢ (F):lm(} o€ (Fi+Fy) 4
where
7 f e—ia( M +r) ®)
= _— J
1 0 \ )\2+7.
and
Iy m(h MAN+r2)
R ek e (©)

0 \)\ '%‘)'

and where r= 8, 2702_*_722

The integrals F, and F; are treated separately in succeeding
sections. The final forms are given in equations (15) and
(19), respectively.

Evaluation of F;.—The integral ) can be converted to a
form that can be more easily handled by writing
e—iE.\IJm

] dX
\’)\—i—r

A
F1=J =i
Q0

and introducing the following relation (see p. 416 of ref. 22)

f Jo(T >\)

-—u.; AN

/)\2+ 2

@)

FINITE WINGS IN SUBSONIC FLOW 3

In the first infegral of these last two integrals, make the
substitution
NT =G =1
and in the second iutegral make the substitution
NS =T =r
Then

p—m M r

\)\"—l—l

—f T Jo()\\ T *——) dr—

M3
if ot VORI R) s ()
0

(Tt 1s of Interest to note, in the expression on the left of eq.
(8), that X and » appear in the same manner. The roles of
these two quantities could, therefore, be interchanged in
the expression on the right.)

With use of equation (8),
written as

Fie f em(n[ f e oA EMT) dre
aQ 0

the equation for F; can be

ME R :
i f o= (MNP =7) df] 9)
[}

Changing the order of integration in each integral (which is
a legitimate step because the integrands involved satisfy
the continuity conditions required for such operations) leads
to the following expression for Fy:

F‘z\fcn e~ dr [J‘“‘ e~ Jy ()\ \“TZ’FJIW) d)‘]—
0 0
M3
’Lj‘ e [f e Jo (N — 72 )(I)\] (10)

The integrals within the brackets in equation (10) may be
evaluated from tables of Fourier or Laplace transforms as
(sce, for example, pair no. 55 of appendix III of ref. 23)

f = Jy (AP T7) dh= =
0 V=gt
T J, M) =
j; 0( A} w =T ) \,72_{_5252
so that
e T MG —: ad d
Fi= — r—f S 11
e 47 —ﬁq_z R ot an
The first integral im equation (11) can be written as
= 85 —-7r
f —, J L (]T——if —,f_—q—dr
0N AN —32 o NFR—1
or
o =" L3 1 /2 _
f ———— dr=f eBErewsh o (Jg f cFerest g (11a)
RN T'I—ﬁsz 0 2 ~x/2
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The first integral on the right of equation (I1a) is given on
page 181 of reference 22 as

f (-3 e Jg— K,(857)
G

where K is the modified Bessel funetion of the second kind
of zero order. The second integral on the right of equation
(11a) is given on page 338 of reference 22 as

et T4 -
—éf c8er et g = — T [Io(ﬁar')—Lo(ﬁZr)]

—y) —7[2

where 1, is the modified Bessel function of the first kind of
zero order and L is the modified Struve funetion of zero
order. Then, the first integral of equation (11) can be
written as

fm —L—;:, dT—
o N7 —p%
— K35 )= [ (T )
(2] o

Note that the end result indicated in equation (12) is in-
dependent of Mach number. The second integral in equa-
tion (11) may be written in another form as

)~ ) — L8]

fM; g-iTr J f.\//ae_"(% V"“"“j)’d 13)
- R M oo B '

This integral has not been reduced to closed form; however,
it is nonsingular and can be readily handled by numerical
methods.

(b"F» _iwp sinh™
z=D Z/o]

0
B (sinh 6— M cosh 6) ¢iu! Ginh =27 cosh o) g

Combining equations (12) and (13) gives the following
expression for Fi:

e (7251567
—— A8 —f(% \’Eﬁ?i),
L, (1_0.:, Vit z-’)]_ﬁ E_f“lifg o
N

By performing the differentiations indicated in equation (4),
there is obtained for the first part of equation (4) the follow-
ing expression:

“;/ | {—IX’I <%]yo!>'—£2l[]1 (%]?/u{)—Lx(%]?luf):|+
l’\[w]y il .
e v dr} (15)

% e B V '.l/o[f

All terms of this expression other than the integral may
be evaluated at small intervals of y, from existing tables,
except at go=0 where the function is singular. The integral
is well behaved and can be accurately evaluated by numerical
or approximate procedures. The type and order of the
singularities at y,=0 are discussed In a later section.

Evaluation of Fp.—-In order to reduce the integral F3,
equation (6), it is convenient to make the substitution

O°F,
lim 5=

A=r sinh @ (16)
so that
sinp 1R
Fz:f r etar (sinh 8~ M cosh 6) (Jg (1 7)
0

Noting that z appears only in 7 and performing the differen-
tiations indicated in equation (4) yields

ele (zo— Mo TP 2}

Yo \Ioa'i‘ﬂé'y

— agpeTl I
=—g ™ “’QH,, B (o= MR IQB“]’y’ | ™AWl (82 cosh 9—(cosh §—BS sinh 6)] @il siahe=3cosh0) g
Yo'y To 7’ b 0
z €% (ze—M,nuam) o8 sinh ™! ’:o' )
=g s — [ €80 MVET=F) o= ABIwl] — =2 Biwl o oghy § ¢iS8Iml (sink 6— 21 cosh 6) Jg 18)

ﬁ23/02\"1 o -+ B2y? \[ 8 2y°

or, by reverting completely to Cartesian coordinates through
equation (16), there is obtained

g W - o b3
62F2> e Ty i (” Ay ﬂ{)_{_ 1 [em(n—’\lwzo‘i-ﬁ" o) —
02 Jsa Ju\yoﬂ.;.ﬁ? My?
Y=Y
T
00

This expression vanishes, as it should, for 2,=0 and, like
that in equation (15), has singularities at y,=0 which, also,
will be handled in a later section. The integral that remains,

Miy,|

like the integral remaining in cquation (135), is nonsingular
and simple in form and can be readily evaluated by numerical
procedures.

Expression for the kernel in terms of nondimensional
length variables..—Equations (15) and (19) can now be
combined to give a reduced form of the kernel function
K(z,,). However, in application, the variables z, and ¥,
are employed, for convenience, in nondimensional form.
This is accomplished by considering these variables in a
new sense to mean that they have been referred to some
chosen length ! and by introducing the reduced-frequency
parameter £=lw/1". The variables will be used in this new
sense throughout the remainder of the report. The kernel
can be written in terms of these nondimensional variables as

¥ 71!
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K(To,yo)_t’ t“" N2 (F1+F°)z=u

LU y ' .
12""“"{ = F Ktk )= Utk )= Lk 1+
__iME Mg

M (ki)' (ko) + B2 (keyy)?

i kzy 3 e ar AT 9
i j; & dx} (20)

An alternate and perhaps more desirable form of expression
for the kernel function is given'in appendix D.

Note that this expression for K(x,,y) can be considered as
a function of only three parameters, namely, kly,!, kzo, and A1
To be more specific, the first two terms are functions only of
klyol; the next two terms are functions of kly,! and 1/; and
the last two terms are functions of kly,l, kxy, and 37,

Equation (20) constitutes the prineipal result of this report.
Some partial checks as to its correctness are: (1) For k=0,
it reduces, as discussed subsequently, to the downwash of a
pressure doublet in steady flow and (2) an integration with
regard to the y-direction between the limits — e to + o
viclds Possio’s result for the two-dimensional case. This
integration is carried out in appendix B. Other special forms
of the kernel function for Af=1, A/=0, and k=0 are derived
in subsequent sections. A power series cxpansion of the
kernel which is applicable for certain ranges of the parameters
klyol, krg, and M is presented. In the scetion immediately
following, the orders and types of the singularities of the
kernel function are discussed.

DISCUSSION OF THE SINGULARITIES OF THE KERNEL FUNCTION

As previously indicated, the kernel function becomes singu-
lar or indeterminate at y,=0. The forms that the kernel
function takes when it becomes singular are of particular
importance in applications to lifting surface theory. Tt is
therefore desirable to extract and treatv the singularities
scparately.

This extraction can be conveniently made by considering
the value of K(x,y,), cquation (20), at points on the semi-
circumference of a small ellipse (see sketch 2), the polar
equation of which may be written as

To=¢€ sin @
Y = cos 8 @n
=3

8

where, because of the symmetry of K(x,y,) with respect to
Yo, only the limits —#/2 £8=<7/2 need be examined. Note
that in these equations values of 6 in the range — /2 £68<0
correspond to field points ahead of or upstream from the
doublet position and values of 8 in the range 06 <#/2, to
field points behind or downstream from the doublet position.
In particular, §==/2 corresponds to points directly behind or
in the wake of the doublet.

8=-ws2

8=7/2

*o
Sketch 2,

After substituting these expressions for r, and y, into
equation (20), the results may be written as

Bre~treslnt [ fe cos 9 (le cos 0)
2 cos? o
iwke cos 6 kecos @ ke cos @
28 [1‘ T (G )]+

K{e,8)=

_1kMe cos 8 1ke (sin 0 - AN

e F e #  dkecos 6, 'k'";—f-w -
M M + g
{ke (8in 8 — 8—21) kZ 2 2 Mg ke cos [

. € cos* @
singe # Tf M1+ )dr+
ik (esine i—t =DM VAZ+ 2 cos? 8)
7 e? dr (22)
M

With the use of the following series expressions for K,(z) and
[1,(z2) —L,(2)] (which can be obtained from ref. 22—for K,,
see p. 80; for 1), see p. 77; and for L;, sce p. 329):

1 z, 53
——f 23T 0
2 4+64 +llo°+ ) (23)
where Y is Euler’s constant (y=0.5772157), and
z 222 2

[(i(2)—=Ly(2)]= + - (29)

+1e433’s§

it is found that for vanishingly small values of ¢ the limiting
value of the expression for K(e,8) in equation (22) is for

M
e—-tke aln é —62 ?]L ]L
o l"’—{ (1 —sin 0)+ 2 log

%2 I:'Y—é—é (JI— sin G—v—~)]+0(€")} (25)

ke(l—sin §)

Ke)~ & To(i=An
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where 0{e*) represents terms of order ¢ for n2 1. Expressed
in terms of r, and y,, equation (25) becomes
e~ (r LoV I ik
Keragy=p { ZEETEU, R
YOI B AT B
—Elov/‘(‘ Iy —1—31/., ) _ / 1
2 e 2(1—11)

2(m _\TUJ:'&I_HB')}O(“)} 26)

Examination of equation (25) shows that the kernel function

K(e6) has singularities with tespeet to e=+r+5y’ as
follows:

f0). k. Kk o

D0 B 0)+og @7

€
where, from equation (25),

s ﬁ"'(l +sin 6)
—sinf  cos*#

fs (9)_
(28)
k cos? o

e =log _MD(1+sin )

T@)=log ~5— =08 5
Although of no particular significance in applications, it is
of interest to note that the quantities f; and f; each have

i g k
minimum values (Ifll,,,,,,=§ and | falwin=log =37/
8= —=/2, which corresponds to points directly alead of the

doublet position; and, as 8 increases from — /2 to +x/2, the
values of these quantities continuously increase from these
minimum values to infinite quantities as follows:

Ifl <g>1=1‘:—1}; [ TRm ‘) 6)] {

=lim |~

cos? (f—6> s-0 | O

k cos? (——o) > (29)

LAY
lﬁ(‘z,; i o(l—m[l+5m (G-5)]
=lim

- 50 i 4(1 - ‘[) s

Thus K(xs,yo) is singular for §=n/2 even when the distance
¢ from the doublet is not necessarily of zero order. This
implies that the doublet produces a wake of discontinuous
downwash that extends downstream from the doublet
position to infinity.

With knowledge of the singularities involved in the kernel
function K(r.,¥,), an expression can be written in which the
kernel is separated into a singular part and a nonsingular
part (as was done by Schwarz, ref. 14, for the two-dimen-
sional case) as follows

K(ry,y0) = [K(20.970) — K’ (20,550 + K’ (2%, 0) (30)

where K(zo ) is defined in equation (20) or (22) and

A 2ot By ik

2 iR R, 2 Ly e
Wiy Ty -+ Yo A Ty +8 Yo

iy {,—ik:r
I\’(v"(l,]/n=*[._. [_

ﬁ{o:JI\'TPﬁE?/_n?_EIO F(rd+ B0 —xa) 31
2% it 20 20D 2
or in terms of e and 6, introduced by equations (21),
., _(,.-IAG &in ¢ ﬁ‘.’ M .
K'{ef)= I [ 1 —sin 9)-{— (am 60— M)
Vol ke(1—sin §) .
7 log 5=y 32)

The term [K{(re.0) — K’ (r0,50)] In equation (30) is a continuous
function for all values of k, xy, and y, and for values of 3/ in
the range of 0 23721, The term K'(xy,%) is discontinuous
at the doublet position {7,=0, y,=0) and at all points in
the wake (r,>>0,,=0). It is to be noted, however, that
cach term of K'(ry,y,) possesses a simple indefinite integral
with respect to y, or with respect to n=y—y,, a fact that
may be useful in some numerical applications.  The manner
in which these integrals are to be evaluated is indicated in
a subsequent scction that deals with steady flow. The
limiting values at y,=0 of [K(wyo)— K’ (x,,¥)] for both
subsonic and sonic flow are given in appendix C together
with some remarks on evaluation of the kernel function.

TREATMENT OF THE SONIC CASE

Because of its speeial nature, the borderline case, /=1,
between subsonic and supersonic flow deserves and requires
separate treatment.

As M—1, the expression for the kernel function given in
equation (20) becomes indeterminate. It is possible, how-
ever, to obtain conditional limiting values for the kernel by
considering the integral F, equation (4), and breaking it into
two integrals, F, and F,, as was done {or the general case.

With regard to Fy, its limiting value and the value of its
derivatives with respect to z at z=0 can be shown to be zero
as M/—1. From the form of F; given by equation (14),

I\ETIF‘ZEE}%K“(VWH >—_[]”(V‘J )
M8, IGCAURE

] f \l—}—r

:Kg(%\y&—#‘éz)_g[ju %‘\‘?/02—{'-&2)—-—

Lo(;’\'o """ : ] fm[("”°+‘) ]d1+

fl+r

Lu (‘ﬁv x";lloz +

. o
» 51N [ N r]
ij; (“——-- ) =dr (33)

But since (see ref. 22, p. 172)

COS;T
@ .\1+ 2

=—HR(¢) (34)

TR



ON THE KERNEL FUNCTION FOR FINITE WINGS IN SUBSONIC FLOW 7

and (see ref. 22, p. 332)

)~ Lo(D)] (33)

.J'“’ sin ¢r g
¢ e dr==
0 4147 2

it may be concluded from equation (33) that

. . OMFY

Hm F; = lim ( ) )=0 (36)
M-l AESANG

The total contribution to K(ry, o) at M=1, therefore, arises

from the limit of F,, equation (6), as M/—1. The limiting

form of F, may be written mn terms of nondimensional co-

ordinates as

lim I, = limf
Al M—=1J0

m approaching the limit 3/=1 (from the subsonic side) in
equation (37), it is convenient to replace 3 by

/
10 B [x hYSUSEY P ;]

——d\ 37
NN B+ 23 )

M=1—c¢

where e is infinitesimally small so that

BF=(1—XM) 1+ )=¢(2—¢) =2¢
With this approximation, cquation {37) may be written as
(o + 3
[ |
lim F, = lim d\

Mol 0 Jo \ )\?—%—25(1/02—1;- 2%

B (bt
Top 2 ()‘ A

=f0_,_k

From physical considerations, the right side of equation (38)
18 to be considered zero for 2, £0. This is in keeping with
results that would be obtained if the limit under consider-
ation were sought from theory of supersonic flow, 3/ >1.

dx (for x5>>0) (38)

The integral in equation (38) cannot be completely
expressed in terms of known functions.  Furthermore, since
it is singular at its lower limit, further treatment is required
to reduce it to a form such that its derivatives with respect
to z can be numerically evaluated. For this purpose the
integral may be written as two integrals, namely

Fdua=F'+F" (39)
where
ll\( _yet? +2
f Eelt M Lo (10)
and

ik yold- 27
C'E()‘—jx—)
Fy'= T (41)
EE A

The limits of integration in equation (40) are so chosen that
the integral in this equation can be reduced to a known form
by making the substitution

1 rypi+22
A=y i+ 25— or = ( u’ y -—)\)

"

394610—56

Thus,
e ikT e~ Vi)
F/= =| ——dr ({2
0 \72+(y02+ 2) o \ITT
Equation (42) may be written in terms of the integrals
mvolved in F| (scc eqgs. (34) and (35)), namely,

) Lo(‘4 7/0 +“')]
(43)

Fy —IXo(l\Jo +2)=" [[U(A\yu i

Differentiating this result twice with respect to z and then
setling z==0 gives

/DZFJ" __k?

( 0zt >z=u_F {_Xl
N o

ﬁ[zmyuw—L(Awyo.)—;]} (44)

Differentiating equation (41) twice with respect to z and

|
— Ku(k|)—
0

setting z=0 gives
ik n
a FN [ Juo (,2 Y d)\] (45)
]L‘/O ]‘ 19!

After performing an integration by parts and collecting
terms, equation (43) may be written as

2 u—lﬂ
= [1\21/( szozez( M)+

; *hry
ke’ )J k um d)\] (46)

Equations (44) and (46) are combined to give <b:j'2

(2

2=0

P
Then, in accordance with equation (4), there is obtained

for K(re,40) s-1:
For x,>0,

. e 1
I‘(J'u,llo)u=x=ﬁé K”{——kf?/ (R Lyl — oy [LUHJU‘)

Yol

kyo?
L(’tju’) ]+ILJ2 l-,’ Z(I\—”)'*'

Yo
&

272
Eyo'J e

(47a)

and, for 7,0,

K{xo,y0)ar-1=0 {47b)
The integral appearing in equation (47a) is finite and
proper and can be evaluated by numerical procedures.

TREATMENT OF THE STEADY AND INCOMPRESSIBLE CASES

Tt is of interest to consider the form of the kernel function
given in equation (20) for some particular values of 1 and k.
In the following sections a discussion is given for the steady
case (k=0) and the incompressible case (3M/=0). The two-
dimensional ease is handled in appendix B.
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Reduction of the kernel for the case of steady flow—1In
order to obtain the reduction of the kernel for the case of
steady flow, consider the expanded form given by equation
26).  As k—0, there results the following expression

1

Ty
—t ) 48
7/(‘ .7/(»2\‘-7'0' +32!/02.

1
K {r,. 7/0)k 0= [’(

which represents the downwash of a pressure doublet for
steady flow. This result serves as a partial check as to the
correctness of the expression for K{s,)o) given by equation
(20).

By replacing 3, in equation (48) by y—n and integrating
from —1 to 1 with respeet to 7, there is obtained

IojF\!Ta?+32(?7-+Tyz]
ro(y+1)

Tohy 1+ B (y— 1)
Lo(y—1)

1
:_JL:IK(.I'U,yo)([ﬂ= —[—[
(49)

where the symbol :}C indicates that a principal value or

finite part of the improper integral must be taken. (See,
for example, ref. 24 for a discussion of finite parts of such
integrals.) This result corresponds to the downwash pro-
duced by a simple horseshoe vortex two units wide. An
equivalent expression for incompres»ible flow is given, for
example, in reference 25, where in contrast to the present
notation, ry has been (h(hen as positive forward.

Reduction of the kernel for M=0.—In order to effeet the
reduction of the kernel for the incompressible case, the
expressions for F, equation (15), and F;, equation (18), will
be examined for the limit 1/—0:

From equation (15)

11111
AL a’z
250

{ KWW%EUﬂﬁDT@mmﬂ}(ﬂ

and from equation (18}

OF, ik fum

)
lrs] sinh 6 efklyo!sinb 0 J§—

lim -2 =,
Mo Q2 Iyt Jo
z—0
To
eitzg (51)
yozw To + J02
Integrating by parts yields
tim OFa b LI [ ey i — T e

uj oz* ’yo Yo ' Yo© .’/‘)2\;1'02’{'.’/02

(52)

Combining the results from F, and F. gives for the kernel
function

—ikx,
memF%;{ Rkl 5 U Rl
, B ] a2
L, (klyo))]— 2+y _ gikry +',‘_\%tyi PR

l.’.!

Ty . <37 .2 3 "
. VATt ('*‘"(/)\} (53)
W Jo

By setting #,=0 in equation (533), a form is obtained which
can be shown to agree with results derived by Kissner for
the case Af=0, r7,=0 (rel. (26}).

A SERIES EXPANSION WITH RESPECT TO “&™

An approximation for the function
(K (o, 10)— K’ (ro, o)

for small values of £ can be obtained by making use of the
serics expansions for & (eq. (23)) and for (I,—L,) (cq. (24))
and expanding all other terms of K(ry,ye) (eq. (20)) into a
power series in terms of k. After performing these expan-
sions and collecting terms with respeet to powers of k, there
is obtained for /<1

v { PRI, s

K(xo,y0) =~ — JLEKAN A
w0~y WNTEEBYE AT
k2 L ; ] 1‘7"62
Sl z( _y_ s
2 |: N B 2 2

# log /‘(\ T;('li'ﬂ .‘/}jf}'o)]_*_

3AP x4 (2—3012
()5 [..Af.ro—}-—" Yoot +(2—3 M%) By, :|+

VI + By
[(1 21182 — 20MPE -+ 158°— 1287 )y’ — 32005+

995"
4(BMA M~ r 128 (M2 — D zoyo®
k —x) .
128%,? log (yz I,f (j__ﬁ{l; 5 ) 'urb'ﬁs?/uz:l-F

ke . 2
:jébbb[(l L)L‘[4+ 100 — 1)10 v T02+ﬂz7lu
DLGHMYri+ B 120 Py —
’1'02’*'/3
55%331?—1)yﬁ‘ﬂ?’*y&]. . } (54)
For values of the parameters that satsfly the following
inequalities
ko
—1
5 <
(55)

g(rv—Jf;nﬁ+ﬁw3%<1

equation (54) yields results that are correet to within about
2 pereent.
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Correspondingly for 3/=1, equation (47) can be expanded
1o obtain

tkry thr

. e~ikn 22 | w €2
I\(J‘o 70)\[=lzf hand "J‘lk .+ - +

Yol L _?/02 [ Z/u') To

—
[

d.re
i ETE 1’/0 Yo _ x'_mi e ?
[I Y ]0 +I c; [J 23/02 + 2'1, 2 +

ikrs
_—I,i_ r;I 0__ ()3 31/0 y()‘e ° +
6 Tayd T dr, 44

Al
éﬁ [Qyo 6’YJ0 '“Gyuz 100' ]HJQ’ 37I'lyoz+

rof

tkzo
) I Yol 0872
31'02"[" 6'!]02 IOg l;,z,+;zz—ygrn4 }+

ilﬁ[ 2 310110 +yu o' +yo?£ ] (56)

961 20y07 3 ro 12087 2006

For values of the parameters that satisfy the following
inequality:
2yt

ILJU <- (57)

kTo
equation (56) yields results that are correct to within about

2 percent.
CONCLUDING REMARKS

The main purpose of this report was to present the kernel
funetion of the integral equation relating the downwash to
the lift distribution in a form that can be computed. This
purpose has been achieved by the presentation of the kernel
in a form given in equation (20). This equation has been
converted to a form more suitable for calculation by isolating
the singularities as shown in equations (30) and (31). The
special case of AM/=1 is given in equations (47). The forms
of the kernel function for other limiting cases, namely k=0
and 1f=0, are given in equations {48) and (53), respectively.

LANGLEY AERONAUTICAL LABORATORY,
Nariovar Apvisory COMMITTEE FOR AERONAUTICS,
Laxcrey Fievp, V., September 18, 1953.



APPENDIX A

DERIVATION OF THE INTEGRAL EQUATION THAT RELATES THE DOWNWASH AND LIFT FOR A FINITE WING BASED ON
REFERENCE 21

In keeping with the concepts of linear theory, the wing is
considered as a nearly plane impencetrable surface.  Let this
surface S lie nearly in the ry-plane, as indicated in sketeh 1
of the body of the report, and let it and the 2, y. = coordinate
system to which it is referred be assumed to move at a
umform speed 17 in the negative r-direction. At the same
time, Iet each point of the wing be assumed to undergo
harmonic translations of small amplitude Z.(ryt) at
circular frequeney @ and let ¢ represent veloceity of sound in
the medium.

The problem for an oscillating wing consists in solving the
wave equation subject o certain boundary conditions. The
wave equation in rectangular coordinates is

O %Y O 110 DY,
=(Vaty) v (A1)

ot Toy oz
The independent variable ¢ in equation (A1) is regarded
herein as an acceleration potential; as such it is directly
proportional to a perturbation pressure field and is related
to a velocity potential ¢ as follows:

04, 09
y=5;1tV357 (A2)

In order to complete the boundary-value problem for the

L . bd;
wing, it is desirable to caleulate the downwash w(x,y,z,/)=
associated with ¢, Assuming this downwash to be ]mrmomc
with regard to time implies that both potentials ¢ and ¢ are
harmonic with regard to time and can be written, therefore, as

$lay, 2 t)=e $(r.y.2)

- (A3)
Yy )= Yla,y.2)

With these expressions for ¢ and ¢, equation (A2) becomes
independent of time and reduces to an ordinary cquation
with one independent variable, namely

V=iw ¢+V’I¢ (A4)

This equation can be integrated with respect to x to give
far

=y s
- C - - .
¢=Tff v\, 2)e Vo dN (A5)
where the lower limit of integration is chosen, for later
convenience, so as fo satisfv the condition that ¢ vanish
as x—>— o,
10

The boundary-value problem for the wing may now be
expressed mathematically as follows: Under the assumption
of harmonic motion the differential equation, equation (A1),
becomes

a¢ 27 3% 1.9
RN C(I +,w)¢ 0 (A6)

In order to insure tangential flow at the wing surface, the
potential must satisfly the downwash condition

w(x,y)= (b ) (V%—}—iwj) Z a2y (A7)

where @ and Z,, are amplitudes of velocity and displacenients,
respectively, and are assumed to be known from the motion
of the wing. At z=0, the pressure

p=—0{)em0 (A8)

must be zero at all points (2,%) off the wing. At all points
on the wing ¢ is allowed to be discontinuous and the value
of p at a given point is determined by the magnitude of the
discontinuity in ¢ at the point.  In the neighborhood of the
trailing edge, p must go to zero, corresponding to the Kutta
condition.

One other condition, that ¢ vanish far ahead of the wing,
is inherently satisfied by the relation between ¢ and ¢ given
in equation (A5).

The potential ¢, at point (s, y, 2) due to a harmonically
pulsating doublet located in the ry-plane at (£, », 0) that
satisfies equation (At) is

> 6i [ (r f)——}
500:4‘1 O-: _;RI (‘"&9)

where

=vE—EFF (=) 8

and the factor A is a strength and dimensionality factor that
makes possible different uses and interpretations of the
potential ¢ I ¢ is considered as an aceeleration potential
and substituted into equation (A5), there is obtained a
corresponding velocity potential ¢, which may be written as

Mx R
R S T Carar))
v f —_ - —-dn

n (A1)

¢0:-1 6—: [

-—®

HE T
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where

=N G R

o} . . .
The downwash 76410 associated with ¢, may be written as

Q4 X T[T,

3= D e AN (Al1)

where z,=r—§, w=w/VA, and r=8,Ty—n*+2% With the
use of this equation and the concept of solving linear
boundary-value problems by means of superposition of
clementary solutions to the governing differential equation,
the boundary-value problem under discussion can be written
as an integral equation, namely

'wl'o Xy C"“ (=21 )
T () =lim Af f Ligne ¥ dgdn o f N
290 ¢ RS )\'+)
s (A12)

where S represents the surfuce of the wing and L, )
represents an unknown lift distribution or doublet strength
on S. Equation (A12) may be seen to correspond essentially
to equations (1) and (2).

If the distribution funetion L(§, 4) in cquation (A12) is
determined in accordance with the boundary conditions
discussed in the preceding paragraph, equation (A12) can
be considered as a complete solution to the boundary-value
problem for an oscillating finite wing in compressible flow.
It is also to be noted that equation (A12) can be considered
to represent a solution to the so-called “indirect” problem,
that is, that of finding the downwash distribution associated
with a given lift distribution.

APPENDIX B

REDUCTION OF THE KERNEL FUNCTION FOR THREE-DIMENSIONAL FLOW TO THAT FOR TWO-DIMENSIONAL FLOW

The purpose of this appendix is to show that integration of
the kernel function K(xg,3) from — = to + o with respect
10 n=%—1%. leads to a known result for two-dimensional flow.
The kernel is first modified to a form that, for the present
case, is casier to handle. Then, after performing an integra-
tion by parts on the modified kernel, the form of the kernel
for the two-dimensional case is given (eq. (B18)). In addi-
tion, the special cases of M=1 (eq. (B23)) and A/=0 (eq.
(B30)) are also shown.

The integration under consideration with respect to 5 is
equivalent to an integration with respect to %, namely

! f K (oy—n) dn=1 f K (ro0) dys (B1)

It is remarked in advance that sinee z has been made zero
in the expression for K(xo,y,), equation (20), it is necessary
to employ the concept of “finite parts of infinite integrals”
when integrating this function across the singularities at
1#=0. Use of this concept gives the same results that
could be obtained by the more arduous task of performing
the integrations before setting z equal to zero.

Modification of the kernel.——In order to effect the desired
modification of the expression for K(x,,,) given by equation
(20), consider the first integral of the expression, namely

Mg _
g f VI 72 el dy (B2)
0
This integral can be written as

lim—sz V1472 g7+ n] (Ir+k9f V1472 e tinlr dr
6—0 0 M8

(B3)
but according to page 331 of reference 22

f A7 g=r+ikn) dr— (5+iklyo)—

aGT iy I
Y (6+ ikiye))] (B4)

where I, is the unmodified Struve function of first order and
Y, is the Bessel function of the second kind of first order. In
the limit as 8—0 these expressions have the following values:
For the first expression in the bracket (see ref. 22, p. 329)

lim T1(6+ik|yol) =L (k|yo]) = — Li(klye) ~ (B5)
50

and for the sccond expression (see ref. 22, pp. 77 and 78)

lim 7,05+ ib{gal) = — 1 (] gl)+ sk
=24 R, (klyl) — L) (B6)

where IT; ¢V denotes the Hankel function of the first kind of
first order. With the use of equations (B3) to (B6), expres-
sion (B2) can be written as

378 ®
e TR et de— i
0

Ar/8

AT 72 e inlr dr

k i . -
o { B+ ()= Ekly) 87

Substituting this result into equation (20) of the text gives
the modified form of K(x,y,) sought, namely
M|

ST 7 LT
KQOWD):T[W—Z/OIG f +AI@)(;2€ £ =

Mavtad £ 5 (- Mv2d3854)
;‘[yo N\ 102+ﬁ2y0

@ ik -
2 - ik, W E’ ()«—A!J}\H»ﬁﬂyﬁ) ]
k fwﬂ 7 =t dT+MyO A

(B8)

Integration of modified kernel.—Since the expression for
K(xo,y,) is symmetrical with respeet to y,, that is, K(x,—y,) =
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K(x,,+1,), the integration under consideration can be

expressed as

| Kl du=2t [ Koy dw  (B9)

where, on the right, the absolute-value signs on y, can be
dropped.

After performing an integration by parts by letting

e—ikro dyo o e—ikzol
do=2 B v=—25 (B10)
and
. iMkyo _iMkye 20— ot @
=@e 6v+1 Bv AIIO+\102+'32 25,( MY +B’u)+
B AI\ o 02_l_ ‘32y0

@ ‘Lz & _ W]
kaozf _\{me—ikyurd.’,_*_l% . & (=M +ﬂ’l/n)d)\ (Bll)

Byoro + 1kMzoy, kYo
{(zo

TS pt, 7 52 - eg(n_M‘/m)'i'
FB8YH T 2By’ i By

ik
20 o8 (A MV FeT)

L —ikpor
e f Ll WY f AN, B12
Yo M/ﬂv,ﬁ— = r+kyo o V‘V)‘Z +B’yo’ Yo ( )

there is obtained for uvl

® —ikt :\ﬂﬂl _Mj)
e (AT

( r_2+32y +u) o (o= M)y
4o 0

First (sce ref. 22, p. 180)

it o a®
th [ 5 (= MR °

(‘ﬂ' ( ANB Y )(lk]u
AI a v, =0

kzyuzf‘” \/14‘1{'7'264““'([7-}—‘ A
A8
(B13)

This expression vanishes at its upper limit y,= = and is
singular at its lower limit y,=0. However, by not making
z—0 in the derivation of K(xo,ye) until after this stage is
reached, this singular value is canceled by other terms that
have otherwise been dropped. Thus, the expression (B313)
may be considered to be zero, which is the value of its finite
part. The integration under consideration is then reduced

to the value of -—f v du which is

e~ "o Bty kM,
—f =2 ! {[(Tﬂz‘l"ﬁ?./oz)m_*_ﬂ”o 2+ 8%y, 2

:Ie@(ro—wmq,‘zf” et

’zo’+f32yo MBI

L[ g(x—m,/xwme)
_ﬁ) /)\2 + 62 2

~an, po | cikM
—pet o] (B
{ 0 To * /102+52y0

k2 dr-+k? f I dyo

T —_— - -
MB41+ 1 N ﬂzyoz

) e;; (Jo— \I-‘/Iv—'*'ﬂﬂ_ilnz)_*_

B14)

The terms of this expression are treated separately in the
next three equations:

TORM ik ) sz kf (l . ) ey
2 ¢ dye="~ Meosh 951) ¢ b
j; ( To +vjm) cosh6-+1)e

__dwk BT el gy o (EM 0N kM |z,
——k [MTO me (SGT) i, (ﬁ—)]

second

e~ ikyyr

o dp | = dre
.ﬁ) V) s 1F 72 dr

=—2ik

= —2:k log 4+

and third (see ref. 22, p. 180)

0 o

—_ }\l\ A? +ﬁ ¥3

a2t o5 f
f € ° \)\24-322102

(x MM Hﬂyo’)

3 7\2+ 52?/0

(B15)

2k2fm — ({T.T fwe-”f'/o’ dyo
M1+ Jo

*  dr
Jae 1+ 7

1+8
M

®B16)

kX

2 — ® S
a=% eﬁ‘%le e a" [m“daz—% a Ho 2 k—H!)\!)d)\
1]

[
(B17)

HEY
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Substituting the results in cquations (B15) to (B17) into
cquation (B14) gives

= 3 xkru
[f K(Jru,z/u)dg/o=—% e‘”"u‘{ [ f\[]To] o (H\IICI‘o])

e (/»1111‘. :|+21 8 log 1;L1ﬁ+

o (e B2 o (EMIN
. 2 (2 v A
Mfo es I, ’(——ﬁz )(1)\}

This result is a form of the expression for the kernel function
of Possio’s integral equation relating pressure and downwash
for a two-dimensional oscillating wing in subsonic compres-
sible flow. It checks the results given, for example, in
reference 27.

Reduction of kernel for M=1.—The kernel function for
M=1 may be written as (see cq. (47a))

(B18)

n

Ko g1 € { = Koo =7y | 1=

27, 1 2 Z(y-2
Ll(ﬂyo[)—;:l-i'm—m e? ( ’u)—{—

. o K2g,? . . i k2,2

S (Nl (] LR
Lizyl;zj; €2 ( A >d)\'— IEZQ}OZJ; e? ( A d)\}
B19)

The second integral appearing in this equation can be shown
to cancel several of the terms so that the kernel becomes

. —ik, T 92 o kry — x— PVL
I\(Toy?lo)nk::'—'e—lz“ y7€2 o ’——f ’ A dk]
(B20)

so that the kernel for the sonic case in two-dimensional flow
may be written as
ihy,?
e~ tkay ikﬂ hd 6‘ 2z,
—_— e 2 - dyﬂ__
! —a YO

i e2d)\f

Integrating equation (B21) by parts with respect to y,, re-
taining only finite parts of the integrated results, and making
use of the relation

lf K(IO;yO)A\{-ldy():

dyo) (B21)

(e - e Jri
2 e~ dr=2s e~ten =322
- [} a
yields

= e‘”‘-tu & 1 _Mz -
lf f'f_r,hyl ‘\"=1(]y0=-—-— w2 —~—p 2y —_
e ) l Yo e

- iky, ixn
ik (°

2
—_ k.fv —
— c (Iyn)— {f e2dx
2o - 0
» 2y 2
I tA ¥,! ZA _tk Vo
—= 2 2 d
( ?lop Yo

o = —— ikxy
=__._?_K\_‘rr PRl ) / 1.
l

Norg et T

NN

Finally, the kernel for the sonic case in two-dimensional flow
may be written as

(B22)

1”/ —ikxy

™ Keogou-idn=3/5

koo [ e
( ez—ik\?f"ez ) ®23)
a

'\I\Iu

It may be noted that the integrals in this equation are readily
expressible in terms of Fresnel integrals

C(I)=f cos = t3dt
0 2
and
S()= f sin T £dt
o 2
Reduction of kernel for M=0.—For A =0 it is convenient
to modify the kernel function before integrating with respect

to yo. For this purpose use is made of the relation (see eq.

B7):
— e Kultll) =3 UCklyl)— Lok o)
" ﬁ T \TT e tdedy
=§_ f AR (B24)

and the relation

2
;f AN 0? e"‘*d)\——f R/TENBY]

With these relations the expr osswn for K(xy,%)a=0, €quation
(53), can be written as

fem N (B25)

: TR
Kz e ( 0 _ ok g MVTOTYO orz
0,Y0)ar =0== I3 ?/()2 *'3'02 +y0 ,”02
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_
1’

But
}2 ‘\‘?]UQ—{F)\Q(,—“)‘(I)\
VAN w’
¥
therefore,
i _ ¢ ~ikz, 6—1&)\ o
K(-lu@/ﬂ)u=0— lyr; —zo('/ _{_)\2)3/2 dn (B_S)
Tutegrating w ith I’o-p(\(‘t Lo Y oives
— RN
2 _ K N fm d’/n
= 2 ok l .
I f o GE
2 —ILA
—— — Z —xk!,\f _ (Z)\
=T
2 s @ =ik = pikx
= 7 0 f — . (l " )\2 )
(B29)

Integrating cach integral in equation (B29) and retaining
only finite parts yields
1Ar0
- —M f

lf K(-l'n.yo)u:o d2/o= -7

li‘)\
zkf - (l>\>

—1k)
(,-tkzu ¢

dA—

_tky :U +?jo ol

»el R
J') —dy R 7/0 *)\2

o o
T Y P
PR —z, (poZ Ay

Yo N T 1T Yo 7 (Yo" 1T

2 _m< ¢ 7 sin Aa
A :r_J o A A=

]‘f coshl)\ If sin kx l>\

—-ik)d)\

(B27)

4k 1 !
='-";r ~9rkr + 9'1“ {Cl (kao)+
i[Si (kxu)-i—g:l}) (B50)
where Cilkry) and Si(kr,) denote, respectively, the “cosine-

“sine-integral’” functions defined as follows:

Gi (I)__f qorst

Si (r):g_f sin {

The results in the braces of equation (B30) cheek with results
given for this case in reference 14.

integral” and

APPENDIX C

SOME REMARKS ON EVALUATION OF THE KERNEL
FUNCTION

Exact expressions for the kernel function K(xg,)y,) are
given in equation (20) for 0=3/<1 and in equation (47)
for Af=1. Corresponding approximate forms are given in
equations (54) and (56).

Equations (20) and (47) are valid for any set of values of
M, k, z, and y,. To calculate the value of the kernel from
these equations, it is necessary to evaluate numierically
the integrals which appear. Values of the other terms can
be obtained by making use of existing tables. Extensive
tables of the Bessel functions K, and I, may be found in
reference 28 and a table of the Struve function L, with second
and fourth differences for interpolation purposes may be
found in refercnce 29. Sample values of the kernel are
given in table I.

Tor certain ranges of values of M, k, z,, and ¥, as indicated
by equations (55) and (57), the kernel can be evaluated
by making use of the power series expansions given by
equation (54) for 0 <3/<1 and equation (56) for 3/=1.

The various expressions for K(1,,) become singular when
Yo=y—n,220. In order to be able to evaluate the kernel
in such circumstances, it has been separated into two parts
as shown in equation (30). One of these is denoted by
K(zo.y0) — K’ (xo10) and is not singular; the other is denoted

by K’'(zo,y,) and contains all the singularities. Obtaining
the value of (K— K’) from the form of the expression given
in equation (30), however, may be troublesome. This
particular value for y,=0, r,>>0 can be obtained from the
following limiting form:

ikx : Q2 =7, 17 ikzo
lxm (K (x0,50) — K’ (x0,50)] = (;_1_—0{(‘76 2+'ll q)_; A0 !t M —
ey

Eadad !}

A ik RT2+0M

o n Ty o 1+:u +
. k.ro . k.}'o .8

¢ (rra)+is (0 —2’]} ©n

where ¥ denotes Euler’s constant (y=0.577216) and Ci and
Si denote cosine-integral and sine-integral functions, re-
spectively.  (These functions are tabulated in reference 30).
For M =1, this expression reduces to

“Iu Un- -7,
lim (K (ro0) — K (ro o)) = L L

—0 Lo Ty
M-

%B—m—m;;(%"%c ““)4- si (““) ’r_j]} ©2)




ON THE KERNEL FUNCTION FOR

The kernel function is not singular for »,<<0. For y,=0

and 7,<0 it may be written for M1 as

(o [ i Mg i (]—
lim K(—ux,, 7/0)— {l R —-6 +ll r()l! fV) -

92 1
Yol A ...“.T()‘

]x - ]1 lu‘ A AITU‘ 71’7' 14y
[C 1—\1 )i V)+ :I} (€5

The expression for K— K’ {or 7,70, ,=0 may also be useful.
Tt is

lim [K(—
yo—0

M 'Im .B [k

To - T —
1] JU)] /. ()JU [Igl

oY) —K'(—

R A

\2.)”0 2! 1'()

O o] Kol
i e (e (y

1—3/)
ol N mi
isi ({7 2]}

For M=1, K(—x0,y0)=K(—10,y0) — K'(—70,50) =0.

Some results of evaluating the kernel and its nonsingular
part are given as examples in table I. (In order to obtain
these results the required integrations were performed
numerically by manual computing methods.)

APPENDIX D
ALTERNATE FORM OF EQUATION (20)

(C9)

Subscquent to the derivation of equation (20) as given in
the text, it was found that the two integrals involved in this
equation can be combined in a manner that leads to a more
concise and, for many purposes, a more convenient form of
expression for the kernel function. The purpose of this
appendix is to derive this alternate form.

Consider first the integral

1 kzo 5'5 =D E ipey?]

l=f‘mj2 . (l)\ (Dl)

and make the substitution

1 >
'@ ()\—ﬂ[\)\Q—FB?(kyg)z) =—l\'{?/0] 7 (DQ)
or
A=k AT ) (D)
This substitution givos for G,
(ro=Mri i) ,
G= e (—:1;[1 -—1)e—fkfm'r dr
M’t[yn[ B v1+7?
it S— Mk yo]
_ 1 . e;ﬁ (IO—A‘['V/In'-I'ﬁ"'lIo)_e— B” :]+
AH.?yO-
. (zo= M V2T B0%)
Lf G LT -k s (D4)
klyolJ s R
Consider now the integral
ALj8
f T4 72 e-iklnds 7 (Ds5)
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and integrate by parts by letting
w= 1= 10
de=c=Wvr 7
so that

7 dr
du= .
hY I JﬁT'

.’, (—n‘ vor

= il

This Integration gives for G,:
kel D
il

e
=gty ¢ Mk o et (DO

Subtracting @, from G, (eqs. (D4) and (D6)) gives

C—a i i —iMEw 1 _iMkiyl
—lp=yv—y— 57— € —57i5.. 3¢ e
T Rl B ARy t
1 E(a-MymiFmm) 1 f M7
s e T - ekl
M2y FaulJo 4 1+ T
. 1 — AT
1 By (s V’rn<+ﬁ'V0') T e—ik{yn!r({r
kLol Jaess V1472

i iMREyol+e S 1 e sy

e Blkyo? T2ty

g 1 — A S8
2 fﬁ-’;v»t G- iokes) g e ]y
Elyl Jo A1+

Substituting this result into equation (20) of the text gives
for K (r0,50)

(D7)

¢~ ikt 1 TR 'n'i
I\(fo,?lo)———{ A.';]FI\I(A‘WOI)'—%[ (ke lapo])— Lok Tyl +
{40 b

7 ke '_‘ [kzo— Mty F(Rpoy’]
e Ty Ll +

Flyol (kyo)2y (R + B2 kyo)?

. e (re— A+ 8y
X fﬁﬂ:wr (re—MVrZHERE) 1 eikmh,;,}
k yOI \'1+T2

The integral in this equation is in general more amenable to
numerical evaluation than either of the two integrals appear-
ing in equation (20). Furthermore, with this expression, it
is not necessary to consider the incompressible case as a
special case, since no trouble arises in setting M/=0. Simi-
larly, for the sonie case no trouble arises and this expression
gives for r,>0:

D8)

Kl oo mim e K (Fly)—
hIf0/A = 1= l l J ’ 1\ U
. . i (l!ln)
AT 37 SININEN 00 NI i1 4[]
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TABLE I.—-VALUES OF THE KERNEL AND ITS NONSINGULAR PART AT M=0.7

!
; 7 woo| ok K (2010 K(oow) — K Gog) |
z 0 0. 125 0.1 —63. 8275604+ 1. 1124007 0. 1445290 —, 0078247 |
.3 —63. 801759+ 3. 2007932 —. 003441 —., 069879
i .5 —63. 5130494+ 5. 4084657 —. 009423 —. 1926357 |
LT —63. 127659+ 7. 466762 —. 018114—. 3748077 !
1.0 —62, 396691+ 10. 445693: —. 0353600—. 756548] ;
1.5 1235 .1 —126. 2639124 19. 1428117 141754 —. 028841 l
.3 —114. 855158+ 55. 631898 —. 031317 —. 056060;
LA — 92 964383+ 86. 820346: —. 123447 —. 1157037
.7 —62. 878740+ 109. 9270261 —. 283001—. 133318:; :
1.0 — 8. 792808+ 125. 2239647 —. 581313 +. 022309; |
0 6.0 .1 —. 0192714+ . 016639¢ —. 000030 —. 006699;
.3 4. 007493+ . 0209501 +. 007793 —. (490647
.5 +. 020861+ . 0015457 . 036165—. 1151457 .
.7 +. 009570 — . 0178887 L 005337—. 1812547
1.0 —. 018833— . 0062907 . 3053627 —. 239670; |
1.5 6. 0 .1 —. 027209+ . 0200381 —. 00905 —. 0062157 |
.3 +. 002452+ . 0281861 —. 005415—. 041401 |
.5 4. 021871+ . 0133057 —. 007432—. 109920/
7 +. 022588 — ., 008080+ —. 026790—. 232786¢
1.0 —. 004786 — . 0220877 —. 190134 —. 523276¢

U. § GOVERRAMENT PRINTING OFFICE: 1358




